On Explicit Recursive Formulas in the Spectral Perturbation Analysis of a Jordan Block

نویسنده

  • Aaron Welters
چکیده

Abstract. Let A (ε) be an analytic square matrix and λ0 an eigenvalue of A (0) of algebraic multiplicity m ≥ 1. Then under the condition, ∂ ∂ε det (λI − A (ε)) |(ε,λ)=(0,λ0) 6= 0, we prove that the Jordan normal form of A (0) corresponding to the eigenvalue λ0 consists of a single m×m Jordan block, the perturbed eigenvalues near λ0 and their corresponding eigenvectors can be represented by a single convergent Puiseux series containing only powers of ε1/m, and there are explicit recursive formulas to compute all the Puiseux series coefficients from just the derivatives of A (ε) at the origin. Using these recursive formulas we calculate the series coefficients up to the second order and list them for quick reference. This paper gives, under a generic condition, explicit recursive formulas to compute the perturbed eigenvalues and eigenvectors for non-selfadjoint analytic perturbations of matrices with non-derogatory eigenvalues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructive Perturbation Theory for Matrices with Degenerate Eigenvalues

Abstract. Let A (ε) be an analytic square matrix and λ0 an eigenvalue of A (0) of multiplicity m ≥ 1. Then under the generic condition, ∂ ∂ε det (λI −A (ε)) |(ε,λ)=(0,λ0) 6= 0, we prove that the Jordan normal form of A (0) corresponding to the eigenvalue λ0 consists of a single m × m Jordan block, the perturbed eigenvalues near λ0 and their eigenvectors can be represented by a single convergent...

متن کامل

On the Remarkable Formula for Spectral Distance of Block Southeast Submatrix

‎‎‎This paper presents a remarkable formula for spectral distance of a given block normal matrix $G_{D_0} = begin{pmatrix}‎ ‎A & B \‎ ‎C & D_0‎ ‎end{pmatrix} $ to set of block normal matrix $G_{D}$ (as same as $G_{D_0}$ except block $D$ which is replaced by block $D_0$)‎, ‎in which $A in mathbb{C}^{ntimes n}$ is invertible‎, ‎$ B in mathbb{C}^{ntimes m}‎, ‎C in mathbb{C}^{mti...

متن کامل

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

Optimizing Matrix Stability

Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to the example. Thus although matric...

متن کامل

Some Applications of the Spectral Shift Operator

The recently introduced concept of a spectral shift operator is applied in several instances. Explicit applications include Krein's trace formula for pairs of self-adjoint operators, the Birman-Solomyak spectral averaging formula and its operator-valued extension, and an abstract approach to trace formulas based on perturbation theory and the theory of self-adjoint extensions of symmetric opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011