On Explicit Recursive Formulas in the Spectral Perturbation Analysis of a Jordan Block
نویسنده
چکیده
Abstract. Let A (ε) be an analytic square matrix and λ0 an eigenvalue of A (0) of algebraic multiplicity m ≥ 1. Then under the condition, ∂ ∂ε det (λI − A (ε)) |(ε,λ)=(0,λ0) 6= 0, we prove that the Jordan normal form of A (0) corresponding to the eigenvalue λ0 consists of a single m×m Jordan block, the perturbed eigenvalues near λ0 and their corresponding eigenvectors can be represented by a single convergent Puiseux series containing only powers of ε1/m, and there are explicit recursive formulas to compute all the Puiseux series coefficients from just the derivatives of A (ε) at the origin. Using these recursive formulas we calculate the series coefficients up to the second order and list them for quick reference. This paper gives, under a generic condition, explicit recursive formulas to compute the perturbed eigenvalues and eigenvectors for non-selfadjoint analytic perturbations of matrices with non-derogatory eigenvalues.
منابع مشابه
Constructive Perturbation Theory for Matrices with Degenerate Eigenvalues
Abstract. Let A (ε) be an analytic square matrix and λ0 an eigenvalue of A (0) of multiplicity m ≥ 1. Then under the generic condition, ∂ ∂ε det (λI −A (ε)) |(ε,λ)=(0,λ0) 6= 0, we prove that the Jordan normal form of A (0) corresponding to the eigenvalue λ0 consists of a single m × m Jordan block, the perturbed eigenvalues near λ0 and their eigenvectors can be represented by a single convergent...
متن کاملOn the Remarkable Formula for Spectral Distance of Block Southeast Submatrix
This paper presents a remarkable formula for spectral distance of a given block normal matrix $G_{D_0} = begin{pmatrix} A & B \ C & D_0 end{pmatrix} $ to set of block normal matrix $G_{D}$ (as same as $G_{D_0}$ except block $D$ which is replaced by block $D_0$), in which $A in mathbb{C}^{ntimes n}$ is invertible, $ B in mathbb{C}^{ntimes m}, C in mathbb{C}^{mti...
متن کاملLinear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras
Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.
متن کاملOptimizing Matrix Stability
Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to the example. Thus although matric...
متن کاملSome Applications of the Spectral Shift Operator
The recently introduced concept of a spectral shift operator is applied in several instances. Explicit applications include Krein's trace formula for pairs of self-adjoint operators, the Birman-Solomyak spectral averaging formula and its operator-valued extension, and an abstract approach to trace formulas based on perturbation theory and the theory of self-adjoint extensions of symmetric opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 32 شماره
صفحات -
تاریخ انتشار 2011